Sub - Riemannian geodesics on the free Carnot group with the growth vector ( 2 , 3 , 5 , 8 ) ∗

نویسنده

  • Yuri Sachkov
چکیده

We consider the free nilpotent Lie algebra L with 2 generators, of step 4, and the corresponding connected simply connected Lie group G. We study the left-invariant sub-Riemannian structure on G defined by the generators of L as an orthonormal frame. We compute two vector field models of L by polynomial vector fields in R, and find an infinitesimal symmetry of the sub-Riemannian structure. Further, we compute explicitly the product rule in G, the rightinvariant frame on G, linear on fibers Hamiltonians corresponding to the left-invariant and right-invariant frames on G, Casimir functions and coadjoint orbits on L∗. Via Pontryagin maximum principle, we describe abnormal extremals and derive a Hamiltonian system λ̇ = ~ H(λ), λ ∈ T ∗G, for normal extremals. We compute 10 independent integrals of ~ H, of which only 7 are in involution. After reduction by 4 Casimir functions, the vertical subsystem of ~ H on L∗ shows numerically a chaotic dynamics, which leads to a conjecture on non-integrability of ~ H in the Liouville sense.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A pr 2 01 3 On Carnot algebra with the growth vector ( 2 , 3 , 5 , 8 )

We compute two vector field models of the Carnot algebra with the growth vector (2, 3, 5, 8), and an infinitesimal symmetry of the corresponding sub-Riemannian structure.

متن کامل

A ug 2 00 6 AREA - STATIONARY SURFACES INSIDE THE SUB - RIEMANNIAN THREE - SPHERE

We consider the sub-Riemannian metric g h on S 3 provided by the restriction of the Riemannian metric of curvature 1 to the plane distribution orthogonal to the Hopf vector field. We compute the geodesics associated to the Carnot-Carathéodory distance and we show that, depending on their curvature, they are closed or dense subsets of a Clifford torus. We study area-stationary surfaces with or w...

متن کامل

ON THE LIFTS OF SEMI-RIEMANNIAN METRICS

In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...

متن کامل

Sub-Riemannian geodesics on the 3-D sphere

The unit sphere S can be identified with the unitary group SU(2). Under this identification the unit sphere can be considered as a non-commutative Lie group. The commutation relations for the vector fields of the corresponding Lie algebra define a 2-step sub-Riemannian manifold. We study sub-Riemannian geodesics on this sub-Riemannian manifold making use of the Hamiltonian formalism and solving...

متن کامل

Ja n 20 07 CONVEX FUNCTIONS ON SUB - RIEMANNIAN MANIFOLDS

We find a different approach to define convex functions in the subRiemannian setting. A function on a sub-Riemannian manifold is nonholonomically geodesic convex if its restriction to any nonholonomic (straightest) geodesic is convex. In the case of Carnot groups, this definition coincides with that by Danniell-Garofalo-Nieuhn (equivalent to that by Lu-Manfredi-Stroffolini). Nonholonomic geodes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014